Перевод: со всех языков на все языки

со всех языков на все языки

countably infinite set

См. также в других словарях:

  • Infinite set — In set theory, an infinite set is a set that is not a finite set. Infinite sets may be countable or uncountable. Some examples are: * the set of all integers, {..., 1, 0, 1, 2, ...}, is a countably infinite set; and * the set of all real numbers… …   Wikipedia

  • Dedekind-infinite set — In mathematics, a set A is Dedekind infinite if some proper subset B of A is equinumerous to A. Explicitly, this means that there is a bijective function from A onto some proper subset B of A. A set is Dedekind finite if it is not Dedekind… …   Wikipedia

  • countably infinite — adjective Being both countable and infinite; having the same cardinality as the set of natural numbers …   Wiktionary

  • Countable set — Countable redirects here. For the linguistic concept, see Count noun. Not to be confused with (recursively) enumerable sets. In mathematics, a countable set is a set with the same cardinality (number of elements) as some subset of the set of… …   Wikipedia

  • Power set — In mathematics, given a set S , the power set (or powerset) of S , written mathcal{P}(S), P ( S ), or 2 S , is the set of all subsets of S . In axiomatic set theory (as developed e.g. in the ZFC axioms), the existence of the power set of any set… …   Wikipedia

  • Index set — In mathematics, the elements of a set A may be indexed or labeled by means of a set J that is on that account called an index set. The indexing consists of a surjective function from J onto A and the indexed collection is typically called an… …   Wikipedia

  • Paradoxes of set theory — This article contains a discussion of paradoxes of set theory. As with most mathematical paradoxes, they generally reveal surprising and counter intuitive mathematical results, rather than actual logical contradictions within modern axiomatic set …   Wikipedia

  • Non-measurable set — This page gives a general overview of the concept of non measurable sets. For a precise definition of measure, see Measure (mathematics). For various constructions of non measurable sets, see Vitali set, Hausdorff paradox, and Banach–Tarski… …   Wikipedia

  • Finite set — In mathematics, a set is called finite if there is a bijection between the set and some set of the form {1, 2, ..., n} where n is a natural number. (The value n = 0 is allowed; that is, the empty set is finite.) An infinite set is a set which is… …   Wikipedia

  • Vitali set — In mathematics, a Vitali set is an elementary example of a set of real numbers that is not Lebesgue measurable. The Vitali theorem is the existence theorem that there are such sets. It is a non constructive result. The naming is for Giuseppe… …   Wikipedia

  • Cantor set — In mathematics, the Cantor set, introduced by German mathematician Georg Cantor in 1883 [Georg Cantor (1883) Über unendliche, lineare Punktmannigfaltigkeiten V [On infinite, linear point manifolds (sets)] , Mathematische Annalen , vol. 21, pages… …   Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»